Mixed-Integer Nonlinear Programming for State-Based Non-Intrusive Load Monitoring

نویسندگان

چکیده

Energy disaggregation, known in the literature as Non-Intrusive Load Monitoring (NILM), is task of inferring energy consumption each appliance given aggregate signal recorded by a single smart meter. In this paper, we propose novel two-stage optimization-based approach for disaggregation. first phase, small training set consisting disaggregated power profiles used to estimate parameters and states solving mixed integer programming problem. Once model are estimated, disaggregation problem formulated constrained binary quadratic optimization We incorporate penalty terms that exploit prior knowledge on how traces generated, appliance-specific constraints characterizing signature different types appliances operating simultaneously. Our compared with existing algorithms both synthetic dataset three real-world datasets. The proposed formulation computationally efficient, able disambiguate loads similar patterns, successfully reconstruct signatures despite presence unmetered devices, thus overcoming main drawbacks methods available literature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) is a technique that determines the load composition of a household through a single point of measurement at the main power feed. Here we presented an unsupervised approach to determine the number of appliances in the household, their power consumption and the state of each one at any given moment.

متن کامل

Mixed-Integer Nonlinear Programming

Recently, the area of Mixed Integer Nonlinear Programming (MINLP) has experienced tremendous growth and a flourish of research activity. In this article we will give a brief overview of past developments in the MINLP arena and discuss some of the future work that can foster the development of MINLP in general and, in particular, robust solver technology for the practical solution of problems.

متن کامل

Evolving Non-Intrusive Load Monitoring

Non-intrusive load monitoring (NILM) identifies used appliances in a total power load according to their individual load characteristics. In this paper we propose an evolutionary optimization algorithm to identify appliances, which are modeled as on/off appliances. We evaluate our proposed evolutionary optimization by simulation with Matlab, where we use a random total load and randomly generat...

متن کامل

Non-intrusive load monitoring for water (WaterNILM)

Better water consumption decisions benefit from detailed use information. Easily installed non-intrusive vibration sensors provide a “no-fuss” retrofit solution for detecting the operation of water consuming appliances. The sensors measure pipe vibration, which are revealed to be a rich source of information for identifying loads. Vibration is processed to extract power spectral density based f...

متن کامل

Sequential Clustering-based Event Detection for Non- Intrusive Load Monitoring

The problem of change-point detection has been well studied and adopted in many signal processing applications. In such applications, the informative segments of the signal are the stationary ones before and after the change-point. However, for some novel signal processing and machine learning applications such as Non-Intrusive Load Monitoring (NILM), the information contained in the non-statio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Smart Grid

سال: 2022

ISSN: ['1949-3053', '1949-3061']

DOI: https://doi.org/10.1109/tsg.2022.3152147